Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling.
نویسندگان
چکیده
Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca(2+). A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric oxide (NO) that improves contraction and relaxation in normal and failing hearts in vivo. The mechanism for myocyte effects remains unknown. Here, we show that this activity results from a direct interaction of HNO with the sarcoplasmic reticulum Ca(2+) pump and the ryanodine receptor 2, leading to increased Ca(2+) uptake and release from the sarcoplasmic reticulum. HNO increases the open probability of isolated ryanodine-sensitive Ca(2+)-release channels and accelerates Ca(2+) reuptake into isolated sarcoplasmic reticulum by stimulating ATP-dependent Ca(2+) transport. Contraction improves with no net rise in diastolic calcium. These changes are not induced by NO, are fully reversible by addition of reducing agents (redox sensitive), and independent of both cAMP/protein kinase A and cGMP/protein kinase G signaling. Rather, the data support HNO/thiolate interactions that enhance the activity of intracellular Ca(2+) cycling proteins. These findings suggest HNO donors are attractive candidates for the pharmacological treatment of heart failure.
منابع مشابه
Nitroxyl Improves Cellular Heart Function by Directly Enhancing Cardiac Sarcoplasmic Reticulum Ca Cycling
Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca . A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric ...
متن کاملCardiac inotropes: current agents and future directions.
Intrinsic inotropic stimulation of the heart is central to the regulation of cardiovascular function, and exogenous inotropic therapies have been used clinically for decades. Unfortunately, current inotropic drugs have consistently failed to show beneficial effects beyond short-term haemodynamic improvement in patients with heart failure. To address these limitations, new agents targeting novel...
متن کاملCalcium cycling proteins and heart failure: mechanisms and therapeutics.
Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur a...
متن کاملDepressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart.
In view of the depressed sarcoplasmic reticulum (SR) Ca2+-pump and Ca2+-release activities in the diabetic heart and the critical role of phosphorylation in regulating the SR function, we examined the status of Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA)-mediated phosphorylations in the diabetic heart. Diabetes was induced in male Sprague-Dawley rats ...
متن کاملPTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction
Protein tyrosine phosphatase interacting protein 51 (PTPIP51) participates in multiple cellular processes, and dysfunction of PTPIP51 is implicated in diseases such as cancer and neurodegenerative disorders. However, there is no functional evidence showing the physiological or pathological roles of PTPIP51 in the heart. We have therefore investigated the role and mechanisms of PTPIP51 in regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2007